Skip to main content

Effects of Hydrothermal Parameters on the Synthesis of Nanocrystalline Zeolite NaY

Buy Article:

$28.00 plus tax (Refund Policy)


Synthesized zeolites are extremely important as industrial minerals and are most commonly prepared using organic templates. Because these organic templates present undesirable environmental hazards, a synthesis method which avoids their use is desirable. The objective of the current study was to develop such a synthesis method. Zeolite NaY was synthesized hydrothermally starting from a mixture of 1.0 Al2O3:10 SiO2:4.6 Na2O:180 H2O molar gel composition, without adding any organic additives. Experiments were carried out to investigate the effects of molar compositions including water content (H2O/SiO2), crystallization conditions including temperature, and time on the crystal size and yield of NaY-type zeolite. The results showed that increasing the crystallization time from 5 to 12 h increased the crystal size, while increasing the crystallization temperature from 80 to 100°C also increased crystallinity. The crystal species of zeolite NaY were characterized by X-ray diffraction, X-ray fluorescence, and scanning electron microscopy analysis. Zeolite NaY crystals in the size range 25–150 nm were synthesized successfully over a period of 8 h at 100°C.


Document Type: Research Article


Publication date: 2012-12-01

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more