A Molality-Based Bet Equation for Modeling the Activity of Water Sorbed on Clay Minerals

Authors: Reynolds, Jacob G.; Johnston, Cliff T.; Agnew, Stephen F.

Source: Clays and Clay Minerals, Volume 60, Number 6, December 2012 , pp. 599-609(11)

Publisher: The Clay Minerals Society

Buy & download fulltext article:

OR

Price: $28.00 plus tax (Refund Policy)

Abstract:

The Brunauer-Emmett-Teller (BET) theory models the effective specific surface area and water content of solids as a function of the relative vapor pressure of water. A modified form of the BET equation has been used successfully to model water activity in concentrated electrolyte solutions as a function of electrolyte concentration. This modified form, referred to here as the Stokes-Robinson BET model, is based on the electrolyte molality rather than on the mass of solute sorbed. The present study evaluates the Stokes-Robinson form of the BET equation to model water-sorption data on two smectites with different layer charges. One smectite was saturated with Na+ and another with Na+, Ca2+, or Mg2+. These results are compared to the Stokes-Robinson BET results of aqueous electrolyte solutions. Given published data on cation exchange capacities and water-vapor sorption isotherms for various clays, the molality of the aqueous phase in contact with the clay surface is calculated and related to water activity. The Stokes-Robinson BET model was found to describe accurately the water activity as a function of cation molality below water activities of 0.5 for the smectites. Good relative agreement was obtained between the number of water binding sites predicted by the model and the experimental data reported in the literature for other smectites. Water molecules were found to have a significantly greater affinity for montmorillonite than electrolyte solutions with the same cation molality as the montmorillonite interlayer. This modified BET approach simplifies water-activity modeling in highly saline environments because the same equation can be used for both the liquid- and mineral-surface phases.

Keywords: BET MODEL; ELECTROLYTE THERMODYNAMICS; WATER ACTIVITY

Document Type: Research Article

DOI: http://dx.doi.org/10.1346/CCMN.2012.0600605

Publication date: December 1, 2012

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki jstucki@illinois.edu

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page
UA-1313315-24