An Electron Paramagnetic Resonance Spectroscopy Investigation of the Retention Mechanisms of Mn and Cu in the Nanopore Channels of Three Zeolite Minerals

Your trusted access to this article has expired.

$28.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The adsorption mechanisms of divalent cations in zeolite nanopore channels can vary as a function of their pore dimensions. The nanopore inner-sphere enhancement (NISE) theory predicts that ions may dehydrate inside small nanopore channels in order to adsorb more closely to the mineral surface if the nanopore channel is sufficiently small. The results of an electron paramagnetic resonance (EPR) spectroscopy study of Mn and Cu adsorption on the zeolite minerals zeolite Y (large nanopores), ZSM-5 (intermediate nanopores), and mordenite (small nanopores) are presented. The Cu and Mn cations both adsorbed via an outer-sphere mechanism on zeolite Y based on the similarity between the adsorbed spectra and the aqueous spectra. Conversely, Mn and Cu adsorbed via an inner-sphere mechanism on mordenite based on spectrum asymmetry and peak broadening of the adsorbed spectra. However, Mn adsorbed via an outer-sphere mechanism on ZSM-5, whereas Cu adsorbed on ZSM-5 shows a high degree of surface interaction that indicates that it is adsorbed closer to the mineral surface. Evidence of dehydration and immobility was more readily evident in the spectrum of mordenite than in that of ZSM-5, indicating that Cu was not as close to the surface on ZSM-5 as it was when adsorbed on mordenite. Divalent Mn cations are strongly hydrated and are held strongly only in zeolites with small nanopore channels. Divalent Cu cations are also strongly hydrated, but can dehydrate more easily, presumably due to the Jahn-Teller effect, and are held strongly in zeolites with medium-sized nanopore channels or smaller.

Keywords: ADSORPTION; COPPER; EPR; INNER-SPHERE; ION EXCHANGE; MANGANESE; NANOPORES; NISE; OUTER-SPHERE; ZEOLITES

Document Type: Research Article

DOI: http://dx.doi.org/10.1346/CCMN.2012.0600604

Publication date: December 1, 2012

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki jstucki@illinois.edu

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more