Skip to main content

Tritium Content of Clay Minerals

Buy Article:

$20.00 plus tax (Refund Policy)

The presence, percentage, origins, and rate of formation of clay minerals have been important components in studies involving the geochemical and structural composition of waste-rock piles. The objective of the present study was to investigate the use of tritium as an indicator of the origin of clay minerals within such piles. Tritium values in pore water, interlayer water, and structural hydroxyl sites of clay minerals were examined to evaluate the origins of clay minerals within waste-rock piles located near Questa, New Mexico. Five clay minerals were identified: kaolinite, chlorite, illite, smectite, and mixed-layer illite-smectite, along with the hydrous sulfate minerals gypsum and jarosite. Analysis of waters derived from clay minerals was achieved by thermal reaction of dry-sieved bulk material obtained from the Questa site. In all Questa samples, the low-temperature water derived from pore-water and interlayer sites, as well as the intermediate-temperature water derived from interlayer cation sites occupied by hydronium and structural hydroxyl ions, show tritium values at or near modern levels for precipitation. Pore water and interlayer water ranged from 5.31 to 12.19 tritium units (TU) and interlayer hydronium and structurally derived water ranged from 3.92 to 7.93 TU. Tritium levels for local precipitation ranged from ∼4 to 8 TU. One tritium unit (TU) represents one molecule of 3H1HO in 1018 molecules of 1H1HO. The elevated levels of tritium in structural sites can be accounted for by thermal incorporation of significant amounts of hydronium ions in interlayer cation sites for illite and mixed-layer clays, both common at the Questa site. In low-pH environments, such as those found within Questa waste-rock piles (typically pH ∼3), the hydronium ion is an abundant species in the rock-pile pore-water system.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: FORMATION AGE; HYDRONIUM; INTERLAYER WATER; ISOTOPIC; SLOPE STABILITY; STRUCTURAL HYDROXYL; TRITIUM

Document Type: Research Article

Publication date: 2012-04-01

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more