Skip to main content

Sorption of Naringin from Aqueous Solution by Modified Clay

Buy Article:

$28.00 plus tax (Refund Policy)

The flavonoid naringin is the main source of the undesirable bitter taste in some citrus juices. In commercial debittering processes, the naringin is adsorbed on non-ionic polymeric resins. Organo-clays (OCs), which have been used as sorbents for organic pollutants, could also have affinity for the naringin molecule, and thus potentially could serve as a debittering agent. The objective of the present study was to characterize the sorption capacity of a prepared OC to evaluate its ability to remove naringin from aqueous solutions, investigating the effect of adsorbent dose, initial concentration of naringin, temperature, contact time, and pH. The OC was prepared by the intercalation of cationic surfactant hexadecyltrimethylammonium bromide in a Mexican bentonite. The host clay and the OC were characterized by X-ray diffraction, Fourier-transform infrared, and nitrogen gas adsorption. The OC showed a surface area of 9.3 m2 g1, 11.35 nm average pore diameter, and a basal spacing, d 001, of 2.01 nm. The adsorbent removed naringin at the rate of 60–72% at 25°C and pH 3. The sorption capacity increased with pH and temperature. Experimental data were well fitted by both Langmuir and Freundlich adsorption models. Most of the sorption took place during the first 10 min and the equilibrium time was reached within 720 min. The rate of sorption was adjusted to pseudo second-order kinetics.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: ADSORBENT; MODIFIED CLAY; NARINGIN; ORGANO-CLAY; SORPTION

Document Type: Research Article

Publication date: 2012-04-01

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki jstucki@illinois.edu

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more