Skip to main content

Ni Enrichment and Stability of Al-Free Garnierite Solid-solutions: A Thermodynamic Approach

Buy Article:

$28.00 plus tax (Refund Policy)

Abstract:

Garnierites represent significant Ni ore minerals in the many Ni-laterite deposits worldwide. The occurrence of a variety of garnierite minerals with variable Ni content poses questions about the conditions of their formation. From an aqueous-solution equilibrium thermodynamic point of view, the present study examines the conditions that favor the precipitation of a particular garnierite phase and the mechanism of Ni-enrichment, and gives an explanation to the temporal and spatial succession of different garnierite minerals in Ni-laterite deposits. The chemical and structural characterization of garnierite minerals from many nickel laterite deposits around the world show that this group of minerals is formed essentially by an intimate intermixing of three Mg-Ni phyllosilicate solid solutions: serpentine-népouite, kerolite-pimelite, and sepiolite-falcondoite, without or with very small amounts of Al in their composition. The present study deals with garnierites which are essentially Al-free. The published experimental dissolution constants for Mg end-members of the above solid solutions and the calculated constants for pure Ni end-members were used to calculate Lippmann diagrams for the three solid solutions, on the assumption that they are ideal. With the help of these diagrams, congruent dissolution of Ni-poor primary minerals, followed by equilibrium precipitation of Ni-rich secondary phyllosilicates, is proposed as an efficient mechanism for Ni supergene enrichment in the laterite profile. The stability fields of the solid solutions were constructed using [log a SiO2(aq), log ((a Mg2+ + aNi2+)/(a H+)2)] (predominance) diagrams. These, combined with Lippmann diagrams, give an almost complete chemical characterization of the solution and the precipitating phase(s) in equilibrium. The temporal and spatial succession of hydrous MgNi phyllosilicates encountered in Ni-laterite deposits is explained by the small mobility of silica and the increase in its activity.

Keywords: GARNIERITES; KEROLITE-PIMELITE; NI-LATERITE; SEPIOLITE-FALCONDOITE; SERPENTINE-NÉPOUITE; STABILITY

Document Type: Research Article

DOI: http://dx.doi.org/10.1346/CCMN.2012.0600203

Publication date: April 1, 2012

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki jstucki@illinois.edu

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • ingentaconnect is not responsible for the content or availability of external websites
cms/ccm/2012/00000060/00000002/art00003
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more