If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Al-saturated phlogopite: charge considerations and crystal chemistry

$28.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Factors controlling the crystal structure of phlogopite have been widely investigated; but the role of electrostatic interactions, for example, has received much less attention than other factors. The purpose of the present study was to peform a single-crystal refinement of an Al-saturated phlogopite and to use that refinement to supplement crystal-chemical analyses. The phlogopite investigated was from the Rumford quadrangle, Maine, and has the following chemistry: (K0.81Na0.03)Σ = 0.84 (Mg1.84Fe2+0.52Al0.45Mn0.02Ti4+0.07)Σ = 2.90(Si2.78Al1.22)Σ = 4O10(OH1.81,F0.05)Σ=1.86. The sample is a 1M polytype with C2/m symmetry and cell dimensions of a = 5.3220(4), b = 9.2170(7), c = 10.2511(8) Å, and  = 100.081(1)°. Hydrogen atoms were located and the crystal structure was refined to give parameters R1 = 0.0301 and weighted R2 = 0.0887. The octahedral M1 site was larger than the M2 (average M1–O: 2.079 Å, average M2–O: 2.062 Å) and the electron counts were equal (M1 = M2 = 14.8 e); based on bond distances, which are more accurate than electron counts in determining occupancy; this result is consistent with a slight preference of Mg for M2 and Fe2+ for M1.

Thirty-five Al-rich, natural phlogopite-1M samples that are of (1) high metamorphic grade, and that have (2) total Al contents ≥1.27 atoms per formula unit (a.p.f.u.), (3) Fe3+ contents ≤0.11 a.p.f.u., and (4) Mn contents ≤0.10 a.p.f.u. along with the newly described phlogopite, exhibited crystal chemical trends related to increasing Al content. Octahedral substitutions of smaller, high-charge cations (i.e. Al) apparently decrease distortions in the octahedral sites and produce longer M2–O4 distances. In addition, VIFe-F avoidance apparently occurs in high Al-content samples, which are generally high in VIFe. The data set also shows that these samples have limited ordering among M sites (Fe2+ in M1 and Al in M2), an increase in b (99.96° to 100.32°) possibly caused by cation ordering and therefore size differences of M1 and M2, and interlayer (A) sites with A–Oouter distances that increase and A–Oinner distances that decrease with increasing Ti content.

Computer models were used to simulate electrostatic interactions in phlogopite structures with variable Al concentrations utilizing Pauling's electrostatic valency principle, which considers first-coordination electrostatic interactions. The model results were compared to the maximum Al concentrations in natural and synthetic phlogopite samples. Model results revealed no indications (e.g. a limit reached or a sudden change occurred) that charge saturation/undersaturation of the apical oxygen atoms at Al contents equal to the maximum in natural and/or synthetic samples causes instability that could not be balanced by bond-length variation. However, a cation of higher charge substituting at M1 (or M2) may result in higher electrostatic repulsions between the other octahedral sites. Thus, the Al3+ content in the octahedral sites may reach a maximum, with Fe2+ for Mg substitutions favored.
More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki jstucki@illinois.edu

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more