Skip to main content

Mineralogical Composition of Shallow Soils on Basic and Ultrabasic Rocks of East Fennoscandia and of the Ural Mountains, Russia

Buy Article:

$28.00 plus tax (Refund Policy)


The influence of epigenetic (pre-pedogenetic) alteration of basic and ultrabasic rocks leading to the formation of phyllosilicate mineral associations is not well known. The purpose of this study was to gain further understanding of the processes involved by investigating the mineral associations of shallow soils underlain by amphibolites and metamorphosed gabbro-diabases (East Fennoscandia) and by serpentinous dunites (olivinite) and metagabbro amphibolites (the Ural Mountains). Where phyllosilicates were absent from the bedrock, they were also absent from the sola. The pedogenic alteration of the initial mineral soil matrix was very weak and did not result in a significant accumulation of phyllosilicates in the soils (East Fennoscandia). Pedogenesis enhanced the transformation of phyllosilicates, a process initiated by epigenic rock alteration.

Phyllosilicates in the sola from basic and ultrabasic rocks of the Polar Urals were largely inherited according to their origin. The inherited phyllosilicate association of the sola from ultrabasic rocks included talc, serpentine, and chlorite. Saponite resulted from pedogenesis; its distribution in various thin soils dependingon the processes of neoformation and decomposition, the latter probably taking place under the influence of lichens and moss.

Chlorite and illite and products of their transformation, including vermiculite, comprise the phyllosilicate association of a solum from basic rock, and traces of talc were found. The distribution of vermiculite and randomly interstratified chlorite-vermiculite (C-V) depended on the processes of chlorite vermiculitization and vermiculite decomposition.


Document Type: Research Article


Publication date: 2009-08-01

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more