Skip to main content

Adsorption of Cr(VI) and As(V) on chitosan-montmorillonite: selectivity and pH dependence

Buy Article:

$28.00 plus tax (Refund Policy)

Abstract:

Montmorillonite modified with the cationic biopolymer, chitosan, has, in weak acidic solutions, protonated amine groups which act as anion-adsorption sites. Due to the specific surroundings of the adsorption sites and diffusion paths in the interlayer of chitosan-montmorillonite, preferential adsorption of certain anions is likely. In the present study, the adsorption properties for the inorganic anions Cr(VI) and As(V) were determined, taking into account solution pH and competitive adsorption in the presence of Cl and SO2−4. Chitosan-montmorillonite was prepared by adding an amount of chitosan equivalent to 500% of the cation exchange capacity (CEC) at pH 5 and 75°C. The resulting anion exchange capacity was ∼0.34 molc/kg. The adsorption properties for As(V) and Cr(VI) were determined with the batch technique at pH 3 to 9. Adsorption isotherms were fitted to the Langmuir and Dubinin-Radushkevich equations and judged quantitatively by the correlation coefficient. To describe the competitive adsorption, the selectivity (S) was determined by the ratio of amounts of anions A and B adsorbed (qA/qB) in a binary system. The ionic species adsorbed, i.e. either Cr(VI) or As(V), depended on the pH, as did the degree of protonation of the amine groups, and this played a decisive role in the amount of anions adsorbed. The maximum amount of Cr(VI) adsorbed was 180 mmol/kg at pH 3.5, whereas for As(V) it was 120 mmol/kg at pH 4.0 to 5.0. The adsorption process of Cr(VI) and As(V) fit well to the Langmuir isotherm. By increasing the concentration of the competitive anion, Cl, in solution, the amount of Cr(VI) and As(V) adsorbed remained almost constant, whereas SO2−4 had a more pronounced competitive effect. At concentration ratios of 0.5 and 1 for SO2−4 to Cr(VI) and As(V), respectively, the sorption capacity decreased by 10 and 25%, respectively. The sequence of the selectivity was: Cr(VI)>SO2−4>As(V)>Cl. Chitosan-montmorillonite showed a high selectivity for Cr(VI), which adsorbed chemically. Despite the lower affinity for As(V) and physical adsorption, the adsorption capacity was relatively high.

Keywords: ANION ADSORPTION; ARSENATE; CHITOSAN-MONTMORILLONITE; CHROMATE; SELECTIVITY

Document Type: Research Article

DOI: https://doi.org/10.1346/CCMN.2008.0560508

Publication date: 2008-10-01

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki jstucki@illinois.edu

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more