Skip to main content

Adsorption of protamine and papain proteins on saponite

Buy Article:

$28.00 plus tax (Refund Policy)


Due to the increased importance of bionanocomposites, protamine and papain proteins were adsorbed on Na+- and on Cs+-exchanged saponite from aqueous solution. Protein analysis of equilibrium solutions and thermogravimetric analyses of biocomposites were used to prepare adsorption isotherms. Based on the isotherm shape, and on the amounts of protein adsorbed and the amounts of Na+ and Cs+ released, the initial protein sorption apparently was due to ion exchange. Additional sorbed protein was weakly retained and could be removed by washing with water. From ion exchange, the average charge of the protamine adsorbed was estimated to be +13.1 to +13.5. Similar papain measurements could not be made due to partial decomposition. Quantitatively, protamine was adsorbed at levels up to 400 mg/g on Na+-saponite and 200 mg/g on Cs+-saponite. The maximum protamine adsorption was 650 to 700 mg/g for Na+-saponite and 350–400 mg/g for Cs+-saponite. Protamine was sorbed to edge surfaces and the basal spacing of the interlamellar region of saponite was 1.75 nm. Protamine displaced only 36% of the Cs+ in Cs+-saponite and expanded the interlamellar region by 36% for a basal spacing of 1.6 nm. Papain sorption to Na+-saponite occurred by a two-step process: (1) adsorption to saponite particle external surfaces followed, (2) by partial intercalation. Quantitatively, Papain was adsorbed up to 100 mg/g for Na+- and Cs+-saponite. Greater initial papain concentrations resulted in a 450 mg/g maximum for Na+-saponite, but no increase above 100 mg/g for Cs+-saponite. Papain apparently only sorbed to external Cs+-saponite surfaces that were estimated to be 33–40 m2/g. Step-wise thermal decomposition of the saponite-protein composites occurred between 300 and 800°C.


Document Type: Research Article


Publication date: 2008-10-01

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more