Skip to main content

Heating fe oxide-rich soils increases the dissolution rate of metals

Buy Article:

$20.00 plus tax (Refund Policy)

Evidence for fire affecting the solubility of metals in Fe oxide-rich Oxisols of the Koniambo Massif of New Caledonia is presented. Acid-dissolution studies showed that Ni, Al and Cr are substituted for Fe in the structure of the Fe oxides. Thermal dehydroxylation of goethite under oxidizing conditions led to the formation of hematite and to the migration of some of these metals towards the surface of hematite crystals as indicated by their enhanced release during the early stage of dissolution. Dehydroxylation of goethite under reducing conditions led to the formation of hematite and maghemite. Nickel and Al were released preferentially during the early stages of dissolution whereas Cr was not released preferentially and may be uniformly incorporated within maghemite and hematite crystals. These results have significance to the mineral-processing industry, to geochemical exploration and to the availability of these metals to plants growing on burnt soils.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2006-04-01

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more