Skip to main content

Biomechanical Analysis of Stacked Plating Techniques to Stabilize Distal Radial Fractures in Small Dogs

Buy Article:

$51.00 plus tax (Refund Policy)

Objective

To evaluate the fatigue life of partially stacked and fully stacked (1.5/2.0 and 2.0/2.7 mm) veterinary cuttable plates (VCP) in a fracture gap model of the distal aspect of the radius. Study Design

In vitro biomechanical study. Methods

Constructs (n=4/group) were assembled for each of 8 groups using 8-hole plates (1.5/2.0 and 2.0/2.7 mm VCP) in the following configurations: unstacked; 2-hole stacked centered over the gap (COG); 4-hole stacked COG; and fully stacked. Plate(s) were secured to 2 separate polyvinylchloride pipe lengths, mounted to a mechanical testing system with a custom jig, and were loaded in axial compression for 106 cycles at 10 Hz or until failure at 6–60 N for the 1.5/2.0 mm VCP and 10–100 N for the 2.0/2.7 mm VCP. Differences in number of cycles, stiffness, and failure mode were recorded. Results

All construct failures occurred through a screw hole adjacent to the gap. Fully stacked and 4-hole stacked 1.5/2.0 and 2.0/2.7 mm VCP withstood 106 cycles. Fatigue life and stiffness of the 1.5/2.0 or 2.0/2.7 mm unstacked constructs were significantly less than the other constructs. Differences were identified in stiffness among the 1.5/2.0 mm stacked constructs and in fatigue life among the 2.0/2.7 mm VCP stacked constructs. Conclusion

Four-hole partially stacked VCP (either 1.5/2.0 or 2.0/2.7 mm) have comparable mechanical properties to fully stacked VCP. Clinical Relevance

Partial stacking of 2 holes of VCP on both sides of the fracture gap may provide sufficient strength for healing, but this premise must be tested in vivo.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2009-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more