If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Free Content The accuracy of human population maps for public health application

You have access to the full text article on a website external to ingentaconnect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Download Article:

Abstract:

Summary Objectives 

Human population totals are used for generating burden of disease estimates at global, continental and national scales to help guide priority setting in international health financing. These exercises should be aware of the accuracy of the demographic information used. Methods 

The analysis presented in this paper tests the accuracy of five large-area, public-domain human population distribution data maps against high spatial resolution population census data enumerated in Kenya in 1999. We illustrate the epidemiological significance, by assessing the impact of using these different human population surfaces in determining populations at risk of various levels of climate suitability for malaria transmission. We also describe how areal weighting, pycnophylactic interpolation and accessibility potential interpolation techniques can be used to generate novel human population distribution surfaces from local census information and evaluate to what accuracy this can be achieved. Results 

We demonstrate which human population distribution surface performed best and which population interpolation techniques generated the most accurate bespoke distributions. Despite various levels of modelling complexity, the accuracy achieved by the different surfaces was primarily determined by the spatial resolution of the input population data. The simplest technique of areal weighting performed best. Conclusions 

Differences in estimates of populations at risk of malaria in Kenya of over 1 million persons can be generated by the choice of surface, highlighting the importance of these considerations in deriving per capita health metrics in public health. Despite focussing on Kenya the results of these analyses have general application and are discussed in this wider context.

Keywords: Kenya; areal weighting; census; dasymetric mapping; demography; pycnophylactic interpolation; smart interpolation

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-3156.2005.01487.x

Affiliations: 1: Malaria Public Health and Epidemiology Group, KEMRI, Nairobi, Kenya 2: TALA Research Group, Department of Zoology, University of Oxford, Oxford, UK

Publication date: October 1, 2005

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more