Skip to main content

Free Content The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Plant hydraulic conductance, namely the rate of water flow inside plants per unit time and unit pressure difference, varies largely from plant to plant and under different environmental conditions. Herein the main factors affecting: (a) the scaling between whole-plant hydraulic conductance and leaf area; (b) the relationship between gas exchange at the leaf level and leaf-specific xylem hydraulic conductance; (c) the short-term physiological regulation of plant hydraulic conductance under conditions of ample soil water, and (d) the long-term structural acclimation of xylem hydraulic conductance to changes in environmental conditions are reviewed. It is shown that plant hydraulic conductance is a highly plastic character that varies as a result of multiple processes acting at several time scales. Across species ranging from coniferous and broad-leaved trees to shrubs, crop and herbaceous species, and desert subshrubs, hydraulic conductance scaled linearly with leaf area, as expected from first principles. Despite considerable convergence in the scaling of hydraulic properties, significant differences were apparent across life forms that underlie their different abilities to conduct gas exchange at the leaf level. A simple model of carbon allocation between leaves and support tissues explained the observed patterns and correctly predicted the inverse relationships with plant height. Therefore, stature appears as a fundamental factor affecting gas exchange across plant life forms. Both short-term physiological regulation and long-term structural acclimation can change the levels of hydraulic conductance significantly. Based on a meta-analysis of the existing literature, any change in environmental parameters that increases the availability of resources (either above- or below-ground) results in the long-term acclimation of a less efficient (per unit leaf area) hydraulic system.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: hydraulic architecture; hydraulic conductance; leaf water status; stomatal regulation; structural acclimation

Document Type: Original Article

Publication date: 2003-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more