Skip to main content

Free Content Cope's Rule and the evolution of long-distance transport in vascular plants: allometric scaling, biomass partitioning and optimization

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Recent advances in allometric theory have proposed a novel quantitative framework by which to view the evolution of plant form and function. This general theory has placed strong emphasis on the importance of long-distance transport in shaping the evolution of many attributes of plant form and function. Specifically, it is hypothesized that with the evolutionary increase in plant size natural selection has also resulted in vascular networks that minimize scaling of total hydrodynamic resistance associated with increasing transport distances. Herein the central features of this theory are reviewed and a broad sampling of supporting but yet preliminary empirical data are analysed. In particular, subtle attributes of the scaling of tracheid and vessel anatomy are hypothesized to be crucial for the evolution of increased plant size. Furthermore, the importance of minimizing hydrodynamic resistance associated with increased transport distances is also hypothesized to be reflected in an isometric scaling relationship between stem mass, MS and root mass, MR(i.e. MS ∝ MR). Preliminary data from multiple extant and fossil plant taxa provide tantalizing evidence supporting the predicted relationships. Together, these results suggest that selection for the minimization of the scaling of hydrodynamic resistance within plant vascular networks has in turn allowed for the enormous diversification in vascular plant size.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Plant size; allometry; biological scaling; hydraulic architecture; macroevolution; xylem evolution

Document Type: Original Article

Publication date: 2003-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more