Skip to main content

Free Content Logistics of water and salt transport through the plant: structure and functioning of the xylem

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Abstract:

ABSTRACT

The xylem is a long-distance transport system that is unique to higher plants. It evolved into a very sophisticated plumbing system ensuring controlled loading/unloading of ions and water and their effective translocation to the required sinks. The focus of this overview will be the intrinsic inter-relations between structural and functional features of the xylem. Taken together the xylem is designed to prevent cavitation (entry of air bubbles), induced by negative pressures under transpiration and to repair the cavitated vessels. Half-bordered pits between xylem parenchyma cells and xylem vessels are on the one hand the gates to the vessels but on the other hand a serious ‘bottle-neck’ for transport. Hence it becomes evident that special transport systems exist at the interface between the cells and vessels, which allow intensive fluxes of ions and water to and out of the xylem. The molecular identification and biophysical/biochemical characterization of these transporters has just started. Paradigms for the sophisticated mechanism of controlled xylem transport under changing environmental conditions are SKOR, a Shaker-like channel involved in K+-loading and SOS1, a Na+/H+ antiporter with a proposed dual function in Na+ transport. In view of the importance of plant water relations it is not surprising to find that water channels dominate the gate of access to xylem. Future studies will focus on the mechanism(s) that regulate water channels and ion transporters and on their physiological role in, for example, the repair of embolism. Clearly, progress in this specific field of research will greatly benefit from an integration of molecular and biophysical techniques aimed to understand ‘whole-plant’ behaviour under the ever-changing environmental conditions in the daily life of all plants.

Keywords: cavitation repair; ion channels; ion transport; ion transporters; potassium; sodium; water transport; xylem

Document Type: Original Article

DOI: https://doi.org/10.1046/j.1365-3040.2003.00930.x

Affiliations: Vrije Universiteit, Faculty of Earth and Life Sciences, Department of Developmental Genetics, Section Mol. Plant Physiol. & Biophysics, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands,

Publication date: 2003-01-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more