Skip to main content

Free Content BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Bactofilins are fibre-forming bacterial cytoskeletal proteins. Here, we report the structural and biochemical characterization of MXAN_7475 (BacM), one of the four bactofilins of Myxococcus xanthus. Absence of BacM leads to a characteristic ‘crooked’ cell morphology and an increased sensitivity to antibiotics targeting cell wall biosynthesis. The absence of the other three bactofilins MXAN_4637–4635 (BacN-P) has no obvious phenotype. In M. xanthus, BacM exists as a 150-amino-acid full-length version and as a version cleaved before Ser28. In the cell, native BacM forms 3 nm wide fibres, which assemble into bundles forming helix-like cytoplasmic cables throughout the cell, and in a subset of cells additionally a polarly arranged lateral rod-like structure. Isolated fibres consist almost completely of the N-terminally truncated version, suggesting that the proteolytic cleavage occurs before or during fibre formation. Fusion of BacM to mCherry perturbs BacM function and cellular fibre arrangement, resulting for example in the formation of one prominent polar corkscrew-like structure per cell. Immunofluorescence staining of BacM and MreB shows that their cellular distributions are not matching. Taken together, these data suggest that rod-shaped bacteria like M. xanthus use bactofilin fibres to achieve and maintain their characteristic cell morphology and cell wall stability.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 May 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more