Skip to main content

Free Content Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Summary

The fungal pathogen Candida albicans forms therapeutically challenging biofilms on biomedical implants. Using a transcript profiling approach genes whose expression is favoured upon biofilm growth compared with planktonic growth have been previously identified. Knock-out mutants for 38 of these genes were constructed, six of which showed a specific defect in biofilm formation. Among these genes, TYE7 that encodes a transcriptional activator of glycolytic genes in planktonic and biofilm growth conditions was identified as being required for the cohesiveness of biofilms. Biofilms formed by the tye7Δ knock-out mutant showed a hyperfilamentous morphology, and growth of this mutant on solid medium under hypoxia was also associated with the production of hyphae. Similar to TYE7 inactivation, inhibition of glycolysis or ATP synthesis using oxalate or an uncoupler, respectively, triggered morphogenesis when a wild-type strain was grown under hypoxia. These treatments also induced the formation of weakly cohesive, hyper-filamentous biofilms by a wild-type strain. Our data indicate that a hypoxic environment is generated within C. albicans biofilms and that continued biofilm development requires a Tye7p-dependent upregulation of glycolytic genes necessary to adapt to hypoxia and prevent uncontrolled hyphal formation. Thus, adaptation to hypoxia is an integral component of biofilm formation in C. albicans.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Institut Pasteur, Plate-Forme d'Imagerie Dynamique, F-75015 Paris, France

Publication date: 2011-05-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more