Skip to main content

Free Content Community signalling between Streptococcus gordonii and Porphyromonas gingivalis is controlled by the transcriptional regulator CdhR

Download Article:

You have access to the full text article on a website external to ingentaconnect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Abstract:

Summary

Interspecies signalling between Porphyromonas gingivalis and Streptococcus gordonii serves to constrain development of dual species communities. Contact with S. gordonii propagates a tyrosine phosphorylation-dependent signal within P. gingivalis that culminates in reduced transcription of adhesin and signalling genes. Here we demonstrate the involvement of the P. gingivalis orphan LuxR family transcription factor PGN_1373, which we designate CdhR, in this control pathway. Expression of cdhR is elevated following contact with S. gordonii; however, regulation of cdhR did not occur in a mutant lacking the tyrosine phosphatase Ltp1, indicating that CdhR and Ltp1 are components of the same regulon. Contact between S. gordonii and a CdhR mutant resulted in increased transcription of mfa, encoding the subunit of the short fimbriae, along with higher levels of Mfa protein. Expression of luxS, encoding AI-2 synthase, was also increased in the cdhR mutant after contact with S. gordonii. The Mfa adhesive function and AI-2-dependent signalling participate in the formation and development of dual species communities, and consistent with this the cdhR mutant displayed elevated accumulation on a substratum of S. gordonii. Recombinant CdhR protein bound to upstream regulatory regions of both mfa and luxS, indicating that CdhR has a direct effect on gene expression. LuxS was also found to participate in a positive feedback loop that suppresses CdhR expression. Interaction of Mfa fimbriae with S. gordonii is necessary to initiate signalling through CdhR. These results reveal CdhR to be an effector molecule in a negative regulatory network that controls P. gingivalis–S. gordonii heterotypic communities.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2958.2010.07420.x

Affiliations: 1: Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA. 2: Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, KY 40292, USA. 3: School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA.

Publication date: December 1, 2010

bsc/mole/2010/00000078/00000006/art00015
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more