Skip to main content

Free Content Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response

Download Article:

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.


MecA targets the competence transcription factor ComK to ClpC. As a consequence, this factor is degraded by the ClpC/ClpP protease. ClpC is a member of the Clp/HSP100 family of ATPases and possesses two ATP binding sites. We have individually modified the Walker A motifs of these two sites and have also deleted a putative substrate recognition domain of ClpC at the C-terminus. The effects of these mutations were studied in vitro and in vivo. Deletion of the C-terminal domain resulted in a decreased binding affinity for MecA, a decreased ATPase activity in response to MecA addition and decreased degradative activity in vitro. In vivo, this deletion resulted in a failure to degrade ComK and in a decrease in thermal resistance for growth. Mutation of the N-terminal Walker A box (K214Q) caused a drastically decreased ATPase activity in vitro, but did not interfere with MecA binding. In vivo, this mutation had no effect on thermal resistance, but had a clpC null phenotype with respect to competence. Mutation of the C-terminal Walker A motif (K551Q) caused essentially the reverse phenotype both in vivo and in vitro. Although binding to MecA was only moderately impaired with 2 mM ATP, this mutant protein displayed no response to 0.2 mM ATP, unlike the wild-type ClpC and the K214Q mutant protein. The ATPase activity of the K551Q mutant protein, induced by the addition of MecA plus ComS, was decreased about 10-fold but was not eliminated. In vivo, the K551Q mutation showed a partial defect with respect to competence and a profound loss of thermal resistance. Sporulation was reduced drastically by the K551Q and less so by the K214Q mutation, but remained unaffected by deletion of the C-terminal domain. Although the evidence suggests that the functions of the two ATP-binding domains overlap, it appears that the N-terminal nucleotide-binding domain of ClpC is particularly concerned with MecA-related functions, whereas the C-terminal domain plays a more general role in the activities of ClpC.

Document Type: Research Article

Publication date: 2001-11-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more