Skip to main content

Assessment of lake–groundwater interactions and anthropogenic stresses, using numerical groundwater flow model, for a Rift lake catchment in central Ethiopia

Buy Article:

$51.00 plus tax (Refund Policy)



A steady-state groundwater flow model (MODFLOW) was used to study lake and groundwater interactions in a complex rift volcanic catchment. It also was used to assess the effects of water pumping from wells, and of variable recharge rates associated with climate and lake level changes, on the dynamics of the volcanic aquifers surrounding Lake Awassa. The model simulations were made after first developing a reasonable conceptual model, on the basis of conventional hydrogeological mapping, pumping test and hydrometeorological data analyses, and from ancillary information obtained from hydrochemical and isotope techniques. The model results indicated that the lakes and Rift aquifers are fed by large groundwater inputs that originate in the highlands. The lakes and rivers have important roles in recharging the aquifers in some locations. Lake Awassa receives a major groundwater inflow from its southern and eastern shorelines, while substantial water leakage from the lake occurs along the northern shoreline. The annual groundwater outflow from the catchment is estimated to 52.5 × 106 m3. Scenario analyses revealed that increasing the current pumping rate from wells by fourfold will substantially reduce the groundwater level substantially, although the regional flow pattern would remain the same. There appears to be no immediate danger to the Rift aquatic environment from the current water pumping rate. Drying the small Lake Shalo and associated swamps, however, will cause a large change in the water balance of the larger Lake Awassa. Slight changes in groundwater recharge can cause large differences in groundwater levels for most of the Rift caldera floor far from the lake shores. This study provides a reasonable foundation for developing detailed transient predictive models, which can then readily be used as a decision support tool for development and implementation of sustainable water resources practices.

Keywords: Awassa; Ethiopian Rift; anthropogenic stresses; groundwater; hydrology; modelling

Document Type: Research Article


Affiliations: Department of Applied Geology, Arba Minch University, PO Box 21, Arba Minch, Ethiopia

Publication date: 2008-12-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more