Skip to main content

Free Content Efficient induction of immune tolerance to coagulation factor IX following direct intramuscular gene transfer

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Abstract:

Summary. 

Background: The formation of inhibitory anti-factor IX (anti-FIX) antibodies is a major complication of FIX protein replacement-based treatment for hemophilia B. It is difficult to treat patients with anti-FIX antibodies. Gene therapy is emerging as a potentially effective treatment for hemophilia. Direct i.m. injection of adeno-associated virus (AAV) is a safe and efficient procedure for hemophilia B gene therapy. However, the development of anti-FIX antibodies following i.m. of AAV may impede its application to patients. Objective: We aimed to investigate induction of immune tolerance to human FIX (hFIX) by i.m. of AAV1, further validating i.m. of AAV1 for hemophilia B gene therapy. Methods and results: Cohorts of hemostatically normal and hemophilia B mice with diverse genetic and MHC backgrounds received i.m. of AAV-hFIX. Human FIX antigen and anti-hFIX antibodies were examined. I.m. of 1 × 1011 vector genomes (VG) of AAV2 elicits formation of anti-hFIX antibodies comparable to those by hFIX protein replacement. I.m. of 1 × 1011 VG of AAV1 results in expression of therapeutic levels of hFIX (up to 950 ng mL−1, mean = 772 ng mL−1, SEM ± 35.7) and hFIX-specific immune tolerance in C57BL/6 mice. Conclusions: A single i.m. of AAV1 can result in efficient expression of therapeutic levels of hFIX and induction of hFIX tolerance in hemostatically normal and hemophilic B mice. Our results substantiate the prospect of i.m. of AAV1 for hemophilia B gene therapy and FIX tolerance induction.

Keywords: adeno-associated virus; factor IX; gene therapy; hemophilia B; immune tolerance

Document Type: Research Article

DOI: https://doi.org/10.1111/j.1538-7836.2007.02522.x

Publication date: 2007-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more