Skip to main content

Free Content Thrombin enhances herpes simplex virus infection of cells involving protease-activated receptor 1

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Background: We have previously shown that the surface of purified herpes family viruses can initiate thrombin production by expressing host-encoded and virus-encoded procoagulant factors. These enable the virus to bypass the normal cell-regulated mechanisms for initiating coagulation, and provide a link between infection and vascular disease. Objective: In the current study we investigated why these viruses may have evolved to generate thrombin. Methods: Using cytolytic viral plaque assays, the current study examines the effect of thrombin on human umbilical vein endothelial cell (HUVEC) or human foreskin fibroblast (HFF) infection by purified herpes simplex virus type 1 (HSV1) and type 2 (HSV2). Results: Demonstrating that the availability of thrombin is an advantage to the virus, purified thrombin added to serum-free inoculation media resulted in up to a 3-fold enhancement of infection depending on the virus strain and cell type. The effect of thrombin on HUVEC infection was generally greater than its effect on HFF. To illustrate the involvement of thrombin produced during inoculation, hirudin was shown to inhibit the infection of each HSV strain, but only when serum containing clotting factors for thrombin production was present in media. The involvement of protease-activated receptor 1 (PAR1) was supported using PAR1-activating peptides in place of thrombin and PAR1-specific antibodies to inhibit the effects of thrombin. Conclusion: These data show that HSV1 and HSV2 initiate thrombin production to increase the susceptibility of cells to infection through a mechanism involving PAR1-mediated cell modulation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: coagulation; herpes virus; protease activated receptor; thrombin

Document Type: Research Article

Affiliations: 1: Canadian Blood Services, Research and Development Department, University of British Columbia and Centre for Blood Research, Department of Pathology and Laboratory Medicine, Vancouver, BC, Canada 2: Infectious Disease Division, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Publication date: 01 May 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more