Skip to main content

Free Content Acute exposure to evening blue‐enriched light impacts on human sleep

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Abstract:

Summary

Light in the short wavelength range (blue light: 446–483 nm) elicits direct effects on human melatonin secretion, alertness and cognitive performance via non‐image‐forming photoreceptors. However, the impact of blue‐enriched polychromatic light on human sleep architecture and sleep electroencephalographic activity remains fairly unknown. In this study we investigated sleep structure and sleep electroencephalographic characteristics of 30 healthy young participants (16 men, 14 women; age range 20–31 years) following 2 h of evening light exposure to polychromatic light at 6500 K, 2500 K and 3000 K. Sleep structure across the first three non‐rapid eye movement non‐rapid eye movement – rapid eye movement sleep cycles did not differ significantly with respect to the light conditions. All‐night non‐rapid eye movement sleep electroencephalographic power density indicated that exposure to light at 6500 K resulted in a tendency for less frontal non‐rapid eye movement electroencephalographic power density, compared to light at 2500 K and 3000 K. The dynamics of non‐rapid eye movement electroencephalographic slow wave activity (2.0–4.0 Hz), a functional index of homeostatic sleep pressure, were such that slow wave activity was reduced significantly during the first sleep cycle after light at 6500 K compared to light at 2500 K and 3000 K, particularly in the frontal derivation. Our data suggest that exposure to blue‐enriched polychromatic light at relatively low room light levels impacts upon homeostatic sleep regulation, as indexed by reduction in frontal slow wave activity during the first non‐rapid eye movement episode.

Document Type: Research Article

DOI: https://doi.org/10.1111/jsr.12050

Publication date: 2013-10-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more