Free Content

Sleep EEG alterations: effects of pulsed magnetic fields versus pulse‐modulated radio frequency electromagnetic fields

Authors: SCHMID, MARC R.; MURBACH, MANUEL; LUSTENBERGER, CAROLINE; MAIRE, MICHELINE; KUSTER, NIELS; ACHERMANN, PETER; LOUGHRAN, SARAH P.

Source: Journal of Sleep Research, Volume 21, Number 6, 1 December 2012 , pp. 620-629(10)

Publisher: Wiley-Blackwell

Buy & download fulltext article:

You have access to the full text article on a website external to ingentaconnect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Abstract:

Summary

Studies have repeatedly shown that electroencephalographic power during sleep is enhanced in the spindle frequency range following radio frequency electromagnetic field exposures pulse‐modulated with fundamental frequency components of 2, 8, 14 or 217 Hz and combinations of these. However, signals used in previous studies also had significant harmonic components above 20 Hz. The current study aimed: (i) to determine if modulation components above 20 Hz, in combination with radio frequency, are necessary to alter the electroencephalogram; and (ii) to test the demodulation hypothesis, if the same effects occur after magnetic field exposure with the same pulse sequence used in the pulse‐modulated radio frequency exposure. In a randomized double‐blind crossover design, 25 young healthy men were exposed at weekly intervals to three different conditions for 30 min before sleep. Cognitive tasks were also performed during exposure. The conditions were a 2‐Hz pulse‐modulated radio frequency field, a 2‐Hz pulsed magnetic field, and sham. Radio frequency exposure increased electroencephalogram power in the spindle frequency range. Furthermore, delta and theta activity (non‐rapid eye movement sleep), and alpha and delta activity (rapid eye movement sleep) were affected following both exposure conditions. No effect on sleep architecture and no clear impact of exposure on cognition was observed. These results demonstrate that both pulse‐modulated radio frequency and pulsed magnetic fields affect brain physiology, and the presence of significant frequency components above 20 Hz are not fundamental for these effects to occur. Because responses were not identical for all exposures, the study does not support the hypothesis that effects of radio frequency exposure are based on demodulation of the signal only.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2869.2012.01025.x

Affiliations: Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland

Publication date: December 1, 2012

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page