Skip to main content

Free Content EEG sigma and slow‐wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Previous studies suggest that sleep‐specific brain activity patterns such as sleep spindles and electroencephalographic slow‐wave activity contribute to the consolidation of novel memories. The generation of both sleep spindles and slow‐wave activity relies on synchronized oscillations in a thalamo‐cortical network that might be implicated in synaptic strengthening (spindles) and downscaling (slow‐wave activity) during sleep. This study further examined the association between electroencephalographic power during non‐rapid eye movement sleep in the spindle (sigma, 12–16 Hz) and slow‐wave frequency range (0.1–3.5 Hz) and overnight memory consolidation in 20 healthy subjects (10 men, 27.1 ± 4.6 years). We found that both electroencephalographic sigma power and slow‐wave activity were positively correlated with the pre–post‐sleep consolidation of declarative (word list) and procedural (mirror‐tracing) memories. These results, although only correlative in nature, are consistent with the view that processes of synaptic strengthening (sleep spindles) and synaptic downscaling (slow‐wave activity) might act in concert to promote synaptic plasticity and the consolidation of both declarative and procedural memories during sleep.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany

Publication date: 2012-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more