Skip to main content

Free Content Chronic partial sleep deprivation reduces brain sensitivity to glutamate N‐methyl‐d‐aspartate receptor‐mediated neurotoxicity

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Abstract:

Summary

It has been hypothesized that insufficient sleep may compromise neuronal function and contribute to neurodegenerative processes. While sleep loss by itself may not lead to cell death directly, it may affect the sensitivity to a subsequent neurodegenerative insult. Here we examined the effects of chronic sleep restriction (SR) on the vulnerability of the brain to N‐methyl‐d‐aspartate (NMDA)‐induced excitotoxicity. Animals were kept awake 20 h per day and were only allowed to rest during the first 4 h of the light phase, i.e. their normal circadian resting phase. After 30 days of SR all rats received a unilateral injection with a neurotoxic dose of NMDA into the nucleus basalis magnocellularis (NBM). Brains were collected for assessment of damage. In the intact non‐injected hemisphere, the number of cholinergic cells in the NBM and the density of their projections in the cortex were not affected by SR. In the injected hemisphere, NMDA caused a significant loss of cholinergic NBM cells and cortical fibres in all animals. However, the loss of cholinergic cells was attenuated in the SR group as compared with the controls. These data suggest that, if anything, SR reduces the sensitivity to a subsequent excitotoxic insult. Chronic SR may constitute a mild threat to the brain that does not lead to neurodegeneration by itself but prepares the brain for subsequent neurotoxic challenges. These results do not support the hypothesis that sleep loss increases the sensitivity to neurodegenerative processes.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2869.2011.00932.x

Affiliations: 1: Department of Behavioral Physiology, University of Groningen, Groningen, The Netherlands 2: Department of Molecular Neurobiology, University of Groningen, Groningen, the Netherlands

Publication date: February 1, 2012

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more