Skip to main content

Free Content Sleep/wake measurement using a non-contact biomotion sensor

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Abstract:

Summary

We studied a novel non-contact biomotion sensor, which has been developed for identifying sleep/wake patterns in adult humans. The biomotion sensor uses ultra low-power reflected radiofrequency waves to determine the movement of a subject during sleep. An automated classification algorithm has been developed to recognize sleep/wake states on a 30-s epoch basis based on the measured movement signal. The sensor and software were evaluated against gold-standard polysomnography on a database of 113 subjects [94 male, 19 female, age 53 ± 13 years, apnoea–hypopnea index (AHI) 22 ± 24] being assessed for sleep-disordered breathing at a hospital-based sleep laboratory. The overall per-subject accuracy was 78%, with a Cohen’s kappa of 0.38. Lower accuracy was seen in a high AHI group (AHI >15, 63 subjects) than in a low AHI group (74.8% versus 81.3%); however, most of the change in accuracy can be explained by the lower sleep efficiency of the high AHI group. Averaged across subjects, the overall sleep sensitivity was 87.3% and the wake sensitivity was 50.1%. The automated algorithm slightly overestimated sleep efficiency (bias of +4.8%) and total sleep time (TST; bias of +19 min on an average TST of 288 min). We conclude that the non-contact biomotion sensor can provide a valid means of measuring sleep–wake patterns in this patient population, and also allows direct visualization of respiratory movement signals.

Keywords: actigraphy; apnoea; biomotion; sleep disturbance; sleep staging

Document Type: Research Article

DOI: https://doi.org/10.1111/j.1365-2869.2010.00876.x

Affiliations: 1: BiancaMed, NovaUCD, Belfield, Dublin 4, Ireland 2: The Respiratory Sleep Disorders Unit, St Vincent’s University Healthcare Group, Dublin 4, Ireland

Publication date: 2011-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more