Free Content Auditory input modulates sleep: an intra-cochlear-implanted human model

You have access to the full text article on a website external to ingentaconnect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Download Article:

Abstract:

Summary

To properly demonstrate the effect of auditory input on sleep of intra-cochlear-implanted patients, the following approach was developed. Four implanted deaf patients were recorded during four nights: two nights with the implant OFF, with no auditory input, and two nights with the implant ON, that is, with normal auditory input, being only the common night sounds present, without any additional auditory stimuli delivered. The sleep patterns of another five deaf people were used as controls, exhibiting normal sleep organization. Moreover, the four experimental patients with intra-cochlear devices and the implant OFF also showed normal sleep patterns. On comparison of the night recordings with the implant ON and OFF, a new sleep organization was observed for the recordings with the implant ON, suggesting that brain plasticity may produce changes in the sleep stage percentages while maintaining the ultradian rhythm. During sleep with the implant ON, the analysis of the electroencephalographic delta, theta and alpha bands in the frequency domain, using the Fast Fourier Transform, revealed a diversity of changes in the power originated in the contralateral cortical temporal region. Different power shifts were observed, perhaps related to the exact position of the implant inside the cochlea and the scalp electrode location. In conclusion, this pilot study shows that the auditory input in humans can introduce changes in central nervous system activity leading to shifts in sleep characteristics, as previously demonstrated in guinea pigs. We are postulating that an intra-cochlear-implanted deaf patient may have a better recovery if the implant is maintained ON during the night, that is, during sleep.

Keywords: auditory processing; cochlear implants; deafness; sleep; sleep–sensory interactions

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2869.2010.00829.x

Affiliations: 1: Neuro-Otología Experimental, ORL, Hospital de Clínicas, Programa de Desarrollo de Ciencias Básicas (PEDECIBA), Universidad de la República 2: Centro de Medicina del Sueño, Facultad de Medicina, CLAEH, Punta del Este 3: Laboratorio de Otoneurología, British Hospital 4: Facultad de Medicina, Universidad de la República, Montevideo, Uruguay

Publication date: December 1, 2010

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more