Skip to main content

Free Content Hypothalamic osmoregulation is maintained across the wake–sleep cycle in the rat

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library



In different species, rapid eye movement sleep (REMS) is characterized by a thermoregulatory impairment. It has been postulated that this impairment depends on a general insufficiency in the hypothalamic integration of autonomic function. This study aims to test this hypothesis by assessing the hypothalamic regulation of body fluid osmolality during the different wake–sleep states in the rat. Arginine-vasopressin (AVP) plasma levels were determined following intracerebroventricular (ICV) infusions of artificial cerebrospinal fluid (aCSF), either isotonic or made hypertonic by the addition of NaCl at three different concentrations (125, 250 and 500 mm). Animals were implanted with a cannula within a lateral cerebral ventricle for ICV infusions and with electrodes for the recording of the electroencephalogram. ICV infusions were made in different animals during Wake, REMS or non-REM sleep (NREMS). The results show that ICV infusion of hypertonic aCSF during REMS induced an increase in AVP plasma levels that was not different from that observed during either Wake or NREMS. These results suggest that the thermoregulatory impairment that characterizes REMS does not depend on a general impairment in the hypothalamic control of body homeostasis.

Keywords: arginine-vasopressin; body homeostasis; hypothalamus; osmoregulation; rapid eye movement sleep; wake–sleep cycle

Document Type: Research Article


Affiliations: 1: Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna, Bologna, Italy 2: Department of Human Physiology, University of Milan, Milan, Italy

Publication date: September 1, 2010

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more