Free Content Differential effects of chronic partial sleep deprivation and stress on serotonin-1A and muscarinic acetylcholine receptor sensitivity

You have access to the full text article on a website external to ingentaconnect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Download Article:

Abstract:

Summary

Disrupted sleep and stress are often linked to each other, and considered as predisposing factors for psychopathologies such as depression. The depressed brain is associated with reduced serotonergic and enhanced cholinergic neurotransmission. In an earlier study, we showed that chronic sleep restriction by forced locomotion caused a gradual decrease in postsynaptic serotonin-1A receptor sensitivity, whilst chronic forced activity alone, with sufficient sleep time, did not affect receptor sensitivity. The first aim of the present study was to examine whether the sleep loss-induced change in receptor sensitivity is mediated by adrenal stress hormones. The results show that the serotonin-1A receptor desensitization is independent of adrenal hormones as it still occurs in adrenalectomized rats. The second aim of the study was to establish the effects of sleep restriction on cholinergic muscarinic receptor sensitivity. While sleep restriction affected muscarinic receptor sensitivity only slightly, forced activity significantly hypersensitized the muscarinic receptors. This hypersensitization is because of the stressful nature of the forced activity protocol as it did not occur in adrenalectomized rats. Taken together, these data confirm that sleep restriction may desensitize the serotonin-1A receptor system. This is not a generalized effect as sleep restriction did not affect the sensitivity of the muscarinic cholinergic receptor system, but the latter was hypersensitized by stress. Thus, chronic stress and sleep loss may, partly via different pathways, change the brain into a direction as it is seen in mood disorders.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more