If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Free Content The effects of 1 week of REM sleep deprivation on parvalbumin and calbindin immunoreactive neurons in central visual pathways of kittens

You have access to the full text article on a website external to ingentaconnect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Download Article:

Abstract:

Many maturational processes in the brain are at high levels prenatally as well as neonatally before eye-opening, when extrinsic sensory stimulation is limited. During these periods of rapid brain development, a large percentage of time is spent in rapid eye movement (REM) sleep, a state characterized by high levels of endogenously produced brain activity. The abundance of REM sleep in early life and its ensuing decline to lower levels in adulthood strongly suggest that REM sleep constitutes an integral part of the activity-dependent processes that enable normal physiological and structural brain development. We examined the effect of REM sleep deprivation during the critical period for visual development on the development of two calcium-binding proteins that are associated with developmental synaptic plasticity and are found in the lateral geniculate nucleus (LGN) and visual cortex. In this study, REM sleep deprivation was carried out utilizing a computer-controlled, cage-shaking apparatus that successfully suppressed REM sleep. Body weight data suggested that this method of REM sleep deprivation produced less stress than the classical multiple-platform-over-water method. In REM sleep-deprived animals with normal binocular vision, the number of parvalbumin-immunoreactive (PV) neurons in LGN was found to be lower compared with control animals but was not affected in visual cortex. The pattern of calbindin-immunoreactivity (CaB) was unchanged at either site after REM sleep deprivation. Parvalbumin-immunoreactivity develops later than calbindin-immunoreactivity in the LGN, and the REM sleep deprivation that we applied from postnatal day 42–49 delayed this essential step in the development of the kitten’s visual system. These data suggest that in early postnatal brain development, REM sleep facilitates the usual time course of the expression of PV-immunoreactivity in LGN neurons.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more