Skip to main content

Free Content Fatal familial insomnia: clinical features and molecular genetics

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

Fatal familial insomnia (FFI) is an autosomal dominant prion disease clinically characterized by inattention, sleep loss, dysautonomia, and motor signs and pathologically characterized by a preferential thalamic degeneration. FFI is linked to a missense mutation at codon 178 of the prion protein gene, PRNP, coupled with the presence of the codon methionine at position 129, the locus of a methionine-valine polymorphism. Homozygotes at codon 129, expressing methionine also in the nonmutated allele, have a shorter disease course (often less than 1 year), prominent sleep and autonomic disturbances at disease onset, and pathology restricted to the thalamus. Heterozygotes at codon 129, expressing valine in the nonmutated allele, have a longer disease course (often longer than 1 year), ataxia and dysarthria at disease onset, and lesions widespread to cerebral cortex. Both in the thalamus and in the cortex, the limbic structures are those most consistently and severely involved: the anterior ventral and mediodorsal thalamic nuclei, the cingulate gyrus, and the orbitofrontal cortex. FFI is thus a prion disease selectively damaging the thalamocortical limbic structures. Loss of sleep, sympathetic hyperactivity, and flattening of vegetative and hormonal circadian oscillations characterize FFI and result from a homeostatic imbalance caused by the interruption of the thalamocortical limbic circuits, the phylogenetically most advanced structures involved in the control of the sleep–wake cycle and the body’s homeostasis. The selective atrophy of the limbic thalamus that characterizes FFI might be due to the binding of FFI toxic PrP or PrPres to specific receptors on thalamolimbic neurons.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: dysautonomia; heterozygotes; homozygotes; limbic thalamus; sleep loss; thalamic degeneration

Document Type: Research Article

Affiliations: 1: Institute of Clinical Neurology, University of Bologna, Bologna, Italy 2: Division of Neuropathology, Institute of Pathology, Case Western Reserve University, Cleveland, Ohio, USA

Publication date: 01 March 1999

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more