Skip to main content

Free Content Circadian variation of EEG power spectra in NREM and REM sleep in humans: Dissociation from body temperature

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra – collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period – was carried out.

EEG power spectra were computed for NREM and REM sleep occurring between 90–120 and 270–300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the ‘morning’ and just after the ‘evening’ increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72°C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed.

The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: alpha; electroencephalogram; forced desynchrony; melatonin; sleep; spindle

Document Type: Research Article

Affiliations: Circadian, Neuroendocrine and Sleep Disorders Section, Division of Endocrinology, Department of Medicine, Harvard Medical School & Brigham and Women's Hospital, Boston, MA 02115, USA

Publication date: 01 September 1999

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more