Skip to main content

Free Content Anatomical and physiological considerations in thalamic rhythm generation

Download Article:

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

The thalamus, known as the pacemaker for spindle rhythms in sleep, has several enabling features that promote such pacemaking. These include a circuitry that interconnects large groups of excitatory and inhibitory neurons, all of which are essentially capable of firing high-frequency `bursts' of discharges. Bursts in thalamic reticular neurons produce powerful inhibition in thalamic relay neurons, which leads to rebound excitation. The timing properties of the inhibition regulate the network activity by controlling rebound burst latency. Anatomical features within thalamus such as convergence and divergence determine the spread and synchronization of pacemaking activity. The anatomical basis of divergence, i.e. the degree of axonal arborization of elements within the thalamic circuit, can be functionally modified in a dynamic fashion by biochemical pathways that regulate the properties of synaptic release. These data suggest that it will be possible to therapeutically regulate the thalamus to modify not only the propensity to sleep but also forms of epilepsy that rely on similar thalamic circuitry.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: GABA; nRt; rebound-burst; recurrent circuitry; spindle

Document Type: Research Article

Affiliations: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford CA 94305, USA

Publication date: 1998-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more