Skip to main content

Free Content A new approach to the analysis of the human sleep/wakefulness continuum

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library



The conventional approach to the analysis of human sleep uses a set of pre-defined rules to allocate each 20 or 30-s epoch to one of six main sleep stages. The application of these rules is performed either manually, by visual inspection of the electroencephalogram and related signals, or, more recently, by a software implementation of these rules on a computer. This article evaluates the limitations of rule-based sleep staging and then presents a new method of sleep analysis that makes no such use of pre-defined rules and stages, tracking instead the dynamic development of sleep on a continuous scale. The extraction of meaningful features from the electroencephalogram is first considered, and for this purpose a technique called autoregressive modelling was preferred to the more commonly-used methods of band-pass filtering or the fast Fourier transform. This is followed by a qualitative investigation into the dynamics of the electroencephalogram during sleep using a technique for data visualization known as a self-organizing feature map. The insights gained using this map led to the subsequent development of a new, quantitative method of sleep analysis that utilizes the pattern recognition capabilities of an artificial neural network. The outputs from this network provide a second-by-second qualification of the sleep/wakefulness continuum with a resolution that far exceeds that of rule-based sleep staging. This is demonstrated by the neural network's ability to pinpoint micro-arousals and highlight periods of severely disturbed sleep caused by certain sleep disorders. Both these phenomena are of considerable clinical value, but neither are scored satisfactorily using rule-based sleep staging.

Keywords: autoregressive modelling; neural networks; self-organizing feature maps; sleep EEG analysis

Document Type: Regular Paper


Affiliations: 1: University of Oxford, Medical Engineering Unit 2: Imperial College, London 3: Osler Chest Unit, Churchill Hospital, Oxford

Publication date: 1996-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more