Skip to main content

Free Content Human circadian rhythms in constant dim light (8 lux) with knowledge of clock time

Download Article:

You have access to the full text article on a website external to ingentaconnect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


The light/dark (L/D) cycle is a major synchronizer of human circadian rhythms. In the absence of a strong L/D cycle, synchrony with 24 hours can nevertheless be maintained in a socially structured environment, as shown in Polar regions (Broadway et al. 1987) and by some blind subjects (Czeisler et al. 1995a). The relative contribution of other time cues to entrainment in dim light has not been fully explored. The present study investigated the behaviour of melatonin (assessed as 6‐sulphatoxymelatonin); rectal temperature; activity and sleep (actigraphy and logs) in constant dim light (L/L) with access to a digital clock. 6 normal healthy males were maintained as a group in partial temporal isolation with attenuated sound and ambient temperature for 21 days. All 6 subjects showed free‐running periodicity for 6‐sulphatoxymelatonin and 5/6 subjects for temperature, activity and sleep offset. The average period (tau) was 24.26±0.049, substantially shorter than in previous experiments with a self selected L/D cycle but similar to a recent study conducted in very dim light. One subject maintained a rigid sleep/wake cycle throughout whilst his 6‐sulphatoxymelatonin rhythm free‐ran. Total sleep time, from actigraph data, did not change but sleep efficiency decreased during the experiment. The subjects did not show group synchronization. These results confirm previous data indicating the importance of the L/D cycle in human entrainment and underline the lesser role of social cues and knowledge of clock time. This particular approach will permit the administration of timed medication to sighted humans under free‐running conditions.

Document Type: Research Article


Affiliations: 1: Chronobiology Laboratory, Endocrinology & Metabolism Group, School of Biological Sciences, University of Surrey, Guildford, UK 2: Defence Research Agency, Centre for Human Sciences, Farnborough, Hants, UK

Publication date: June 1, 1996


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics