Skip to main content

Free Content Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

J. Neurochem. (2010) 114, 215–225. Abstract

Neuropeptides are produced from larger precursors by limited proteolysis, first by endopeptidases and then by carboxypeptidases. Major endopeptidases required for these cleavages include prohormone convertase (PC) 1/3 and PC2. In this study, quantitative peptidomics analysis was used to characterize the specific role PC1/3 plays in this process. Peptides isolated from hypothalamus, amygdala, and striatum of PC1/3 null mice were compared with those from heterozygous and wild-type mice. Extracts were labeled with stable isotopic tags and fractionated by HPLC, after which relative peptide levels were determined using tandem mass spectrometry. In total, 92 peptides were found, of which 35 were known neuropeptides or related peptides derived from 15 distinct secretory pathway proteins: 7B2, chromogranin A and B, cocaine- and amphetamine-regulated transcript, procholecystokinin, proenkephalin, promelanin concentrating hormone, proneurotensin, propituitary adenylate cyclase-activating peptide, proSAAS, prosomatosatin, provasoactive intestinal peptide, provasopressin, secretogranin III, and VGF. Among the peptides derived from these proteins, ∼1/3 were decreased in the PC1/3 null mice relative to wild-type mice, ∼1/3 showed no change, and ∼1/3 increased in PC1/3 null. Cleavage sites were analyzed in peptides that showed no change or that decreased in PC1/3 mice, and these results were compared with peptides that showed no change or decreased in previous peptidomic studies with PC2 null mice. Analysis of these sites showed that while PC1/3 and PC2 have overlapping substrate preferences, there are particular cleavage site residues that distinguish peptides preferred by each PC.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: neuropeptide; peptidase; peptide processing; proSAAS; proprotein convertase; protease

Document Type: Research Article

Affiliations: 1: Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA 2: Institut de Pharmacologie de Sherbrooke and Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Québec, Canada 3: Department of Cell Biology and Development, University of São Paulo, São Paulo, Brazil 4: Department of Medicine, The University of Chicago, Chicago, Illinois, USA

Publication date: 01 July 2010

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more