Skip to main content

EXPERIMENTAL COMPARISON OF NATURAL CONVECTION AND CONDUCTION HEAT TRANSFER

The full text article is not available.

At present, only title information is available on ingentaconnect.com for this article. This is due to copyright restrictions.

Abstract:

ABSTRACT

Magnitude of fluid motion is significant in convective heat transfer (the faster the fluid motion, the greater the heat transfer), while in conductive heat transfer, there is no physical movement of objects undergoing heat transfer. Due to this statement, it is a real fact that convection can be many times faster than conduction. The objective of this research was to compare natural convection and conduction by creating both heat transfer mechanisms in the same product. For this purpose, canned water and 1% agar-gelled water were used in the experimental and further computational fluid dynamics studies. Experiments were conducted at 70C and in boiling water, and ANSYS V.10 (Ansys Inc., Canonsburg, PA) was used in the numerical simulations. The results showed that addition of agar prevented the natural convection phenomena in the gels resulting in pure conduction while the effect of natural convection, which occurred due to thermal buoyancy effects in the given gravitational force field, was obvious in the case of water. Creation of both natural convection and conduction heat transfer mechanisms in the same medium is an important contribution as the effect of natural convection over the conduction heat transfer can directly be emphasized. PRACTICAL APPLICATIONS

Creation of both natural convection and conduction heat transfer mechanisms in the same medium would be an important contribution as the effect of natural convection over the conduction heat transfer can experimentally be emphasized. The results of this study are significant to show the significant difference between these heat transfer modes as both mechanisms were created in the same medium, and these results will be useful especially for teaching heat transfer purposes.

Document Type: Research Article

DOI: https://doi.org/10.1111/j.1745-4530.2008.00309.x

Publication date: 2010-02-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more