Skip to main content

NEURAL NETWORK MODELING OF END-OVER-END THERMAL PROCESSING OF PARTICULATES IN VISCOUS FLUIDS

The full text article is not available.

At present, only title information is available on ingentaconnect.com for this article. This is due to copyright restrictions.

Abstract:

ABSTRACT

Modeling of the heat transfer process in thermal processing is important for the process design and control. Artificial neural networks (ANNs) have been used in recent years in heat transfer modeling as a potential alternative to conventional dimensionless correlation approach and shown to be even better performers. In this study, ANN models were developed for apparent heat transfer coefficients associated with canned particulates in high viscous Newtonian and non-Newtonian fluids during end-over-end thermal processing in a pilot-scale rotary retort. A portion of experimental data obtained for the associated heat transfer coefficients were used for training while the rest were used for testing. The principal configuration parameters were the combination of learning rules and transfer functions, number of hidden layers, number of neurons in each hidden layer and number of learning runs. For the Newtonian fluids, the optimal conditions were two hidden layers, five neurons in each hidden layer, the delta learning rule, a sine transfer function and 40,000 learning runs, while for the non-Newtonian fluids, the optimal conditions were one hidden layer, six neurons in each hidden layer, the delta learning rule, a hyperbolic tangent transfer function and 50,000 learning runs. The prediction accuracies for the ANN models were much better compared with those from the dimensionless correlations. The trained network was found to predict responses with a mean relative error of 2.9–3.9% for the Newtonian fluids and 4.7–5.9% for the non-Newtonian fluids, which were 27–62% lower than those associated with the dimensionless correlations. Algebraic solutions were included, which could be used to predict the heat transfer coefficients without requiring an ANN. PRACTICAL APPLICATIONS

The artificial neural network (ANN) model is a network of computational elements that was originally developed to mimic the function of the human brain. ANN models do not require the prior knowledge of the relationship between the input and output variables because they can discover the relationship through successive training. Moreover, ANN models can predict several output variables at the same time, which is difficult in general regression methods. ANN concepts have been successfully used in food processing for prediction, quality control and pattern recognition. ANN models have been used in recent years for heat transfer modeling as a potential alternative to conventional dimensionless correlation approach and shown to be even better performers. In this study, ANN models were successfully developed for the heat transfer parameters associated with canned particulate high viscous Newtonian and non-Newtonian fluids during an end-over-end rotation thermal processing. Optimized configuration parameters were obtained by choosing appropriate combinations of learning rule, transfer function, learning runs, hidden layers and number of neurons. The trained network was found to predict parameter responses with mean relative errors considerably lower than from dimensionless correlations.

Document Type: Research Article

DOI: https://doi.org/10.1111/j.1745-4530.2008.00272.x

Publication date: 2010-02-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more