Skip to main content


The full text article is not available.

At present, only title information is available on for this article. This is due to copyright restrictions.



Yeast drying is widely used to ease transport and conservation. In this work, baker's yeast drying in fluidized bed is modeled using a pore network model. Classical balanced equations at the reactor scale are coupled with the pore network for the grain, which takes into account diffusion in the gas phase, transport by liquid film in partially saturated region and pressure gradient effects in the liquid phase. The porous structure to be applied in the model is obtained using environmental scanning electron microscopy. Simulations are validated on a thermogravimetric analysis experiment. The model is then applied to fluidized bed drying for which experimental results obtained on a laboratory pilot are available. Finally, the model results are compared to those of a simplified receding front model. PRACTICAL APPLICATIONS

The presented model allows simulation of Saccharomyces cerevisiae fluidized bed drying. Taking into account transport phenomena in the grain offers the opportunity to predict drying rate without the use of a desorption isotherm. Moreover, the model predicts roughly the critical humidity. Therefore, the model can be used for scale-up, design and optimization of dryer including the effect of changes in yeast granulation.

Document Type: Research Article


Publication date: 2010-02-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more