Skip to main content

EXPERIMENTAL AND NEURAL NETWORK PREDICTION OF THE PERFORMANCE OF A SOLAR TUNNEL DRIER FOR DRYING JACKFRUIT BULBS AND LEATHER

Buy Article:

$43.00 plus tax (Refund Policy)

ABSTRACT

This article presents the field performance of a solar tunnel drier for drying jackfruit bulbs and leather. The drier consists of a transparent plastic-covered flat-plate collector and a drying tunnel connected in series to supply hot air directly into the drying tunnel using two direct-current fans operated by a photovoltaic module. The drier has a loading capacity of 120–150 kg of fruits. Sixteen experimental runs were conducted for drying jackfruit bulbs and leather (eight runs each). The use of a solar tunnel drier led to a considerable reduction in drying time and dried products of better quality in comparison to products dried under the sun. A multilayered neural network approach was used to predict the performance of the solar tunnel drier. Using solar drying data of jackfruit bulbs and leather, the model has been trained using backpropagation algorithm. The prediction of the performance of the drier was found to be excellent after it was adequately trained. It can be used to predict the potential of the drier for different locations, and can also be used in a predictive optimal control algorithm.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Farm Power and Machinery 2: Department of Farm Structure Bangladesh Agricultural University Mymensingh 2202, Bangladesh 3: Department of Physics Silpakorn University Nakhon Pathom, Thailand

Publication date: 01 December 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more