Skip to main content

Prediction of Eye Color from Genetic Data Using Bayesian Approach*

The full text article is not available.

At present, only title information is available on for this article. This is due to copyright restrictions.


Abstract:  Prediction of visible traits from genetic data in certain forensic cases may provide important information that can speed up the process of investigation. Research that has been conducted on the genetics of pigmentation has revealed polymorphisms that explain a significant proportion of the variation observed in human iris color. Here, on the basis of genetic data for the six most relevant eye color predictors, two alternative Bayesian network model variants were developed and evaluated for their accuracy in prediction of eye color. The first model assumed eye color to be categorized into blue, brown, green, and hazel, while the second variant assumed a simplified classification with two states: light and dark. It was found that particularly high accuracy was obtained for the second model, and this proved that reliable differentiation between light and dark irises is possible based on analysis of six single nucleotide polymorphisms and a Bayesian procedure of evidence interpretation.

Document Type: Research Article


Affiliations: 1: Section of Forensic Genetics, Institute of Forensic Research, Westerplatte 9, 31-033 Kraków, Poland. 2: Department of Dermatology, Collegium Medicum of the Jagiellonian University, Skawińska 8, 31-066 Kraków, Poland.

Publication date: 2012-07-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more