Skip to main content

Detection and Classification of Ignitable Liquid Residues Using a Fluorescence-Based Vapor-Sensitive Microsphere Array

Buy Article:

$43.00 plus tax (Refund Policy)


This paper describes the application of microsphere vapor sensing arrays to the detection of ignitable liquid (IL) vapors as both pure vapors and as residues (ILRs) on simulated fire debris samples. The temporal fluorescence response profile of the microsphere array generated a reproducible pattern unique to each analyte that could be used to classify subsequent sensor responses. This system, together with a support vector machine pattern recognition algorithm, was used to address several different IL and ILR classification scenarios. High classification accuracy (98%) was maintained over more than 200 vapor responses and the array was able to identify ILs when presented to the pattern classification algorithm within a dataset containing 11 other volatile compounds. Both burned and unburned IL treated samples were classified correctly greater than 97% of the time. These results indicate that microsphere vapor sensing arrays may be useful for the rapid identification of ILs and ILRs.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: artificial nose; fluorescence; forensic science; ignitable liquid detection; microsensor array; pattern recognition

Document Type: Research Article

Affiliations: Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155.

Publication date: 2010-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more