Skip to main content

The Thermodynamics of Latent Fingerprint Corrosion of Metal Elements and Alloys

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Abstract: 

Redox reactions taking place between the surface of a metal and fingerprint residue have been expressed thermodynamically in terms of both the Nernst equation for reduction potential and the complexation constant for the formation of complex metal halide ions in aqueous solution. These expressions are used to explain experimental results for the corrosion of 10 different metal elements by fingerprint residue in air at room temperature. Corrosion of noble metals, such as silver and gold, supports the proposition that the degree of metal corrosion is enhanced by the presence of chloride ions in eccrine sweat. Extending the experiments to include 10 metal alloys enabled the construction of a fingerprint corrosion series for 20 different metals. Fingerprint corrosion on metals alloyed with > ∼40% copper was found to display third level fingerprint detail. A comparison of both conventional ink on paper and digital (Livescan) fingerprinting techniques with fingerprints deposited on 9 Karat gold alloy has shown that gold alloy depositions are least susceptible to third level detail obliteration by poor fingerprint capturing techniques.

Keywords: forensic science; latent fingerprint; metal surface; print visualization

Document Type: Research Article

DOI: https://doi.org/10.1111/j.1556-4029.2008.00860.x

Affiliations: Scientific Support Unit, Northamptonshire Police, Wootton Hall, Northampton NN4 0JQ, U.K.

Publication date: 2008-11-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more