Skip to main content

Connectivity of a large embayment and coastal fishery: spawning aggregations in one bay source local and broad-scale fishery replenishment

Buy Article:

$48.00 plus tax (Refund Policy)


Ichthyoplankton sampling and otolith chemistry were used to determine the importance of transient spawning aggregations of snapper Chrysophrys auratus (Sparidae) in a large embayment, Port Phillip Bay (PPB), Australia, as a source of local and broad-scale fishery replenishment. Ichthyoplankton sampling across five spawning seasons within PPB, across the narrow entrance to the bay and in adjacent coastal waters, indicated that although spawning may occur in coastal waters, the spawning aggregations within the bay were the primary source of larval recruitment to the bay. Otolith chemical signatures previously characterized for 0+ year C. auratus of two cohorts (2000 and 2001) were used as the baseline signatures to quantify the contribution that fish derived from reproduction in PPB make to fishery replenishment. Sampling of these cohorts over a 5 year period at various widely dispersed fishery regions, combined with maximum likelihood analyses of the chemistry of the 0+ year otolith portions of these older fish, indicated that C. auratus of 1 to 3+ years of age displayed both local residency and broad-scale emigration from PPB to populate coastal waters and an adjacent bay (Western Port). While the PPB fishery was consistently dominated (>70%) by locally derived fish irrespective of cohort or age, the contribution of fish that had originated from PPB to distant populations increased with age. At 4 to 5+ years of age, when C. auratus mature and fully recruit to the fishery, populations of both cohorts across the entire central and western Victorian fishery, including two major embayments and c. 800 km of coastal waters, were dominated (>70%) by fish that had originated from the spawning aggregations and nursery habitat within PPB. Dependence of this broadly dispersed fishery on replenishment from heavily targeted spawning aggregations within one embayment has significant implications for management and monitoring programmes.

Keywords: Chrysophrys auratus; dispersal; ichthyoplankton; nursery; otolith chemistry

Document Type: Regular Paper


Affiliations: 1: Department of Primary Industries, P. O. Box 114, Queenscliff, Victoria 3225, Australia 2: Department of Zoology, University of Melbourne, Parkville, Victoria 3052, Australia

Publication date: April 1, 2011


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more