Using hierarchical models to estimate effects of ocean anomalies on north-west Pacific Chinook salmon Oncorhynchus tshawytscha recruitment

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

The high variability in survival over the past three decades of north-west Pacific Chinook salmon Oncorhynchus tshawytscha is summarized for 24 stocks and analysed using hierarchical Bayesian models. Results from a simple model indicate that recruitment anomalies appear to be correlated in time and space. A simple model with a covariate based on basin-scale effects (Pacific Decadal Oscillation and El NiƱo Southern Oscillation) and local-scale effects (sea surface temperature, SST anomaly) was introduced to explain this variability. The model still exhibited residual patterns that were removed when a random-walk component was added to the model. The analysis indicates that recruitment is negatively related to SST anomaly for all stocks and the effect of basin-scale variables is negligible. The effect of climate over the next century is expected to result in estimated recruitment declining by an average of 13% for O. tshawytscha stocks coastwide.

Keywords: Bayesian; Ricker; climate change; meta-analysis; productivity; sea surface temperature

Document Type: Regular Paper

DOI: http://dx.doi.org/10.1111/j.1095-8649.2010.02779.x

Affiliations: Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, U.S.A.

Publication date: November 1, 2010

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more