Skip to main content

Elevated water temperature impairs fertilization and embryonic development of whitefish Coregonus lavaretus

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

The adverse effects of high temperatures on the early life stages of anadromous whitefish Coregonus lavaretus were experimentally examined by assessing fertilization success, the percentage of developmental abnormalities, cumulative mortality and the rate of embryogenesis across a range of temperatures. Temperatures ≥ 7° C increased the proportion of unfertilized and abnormally dividing eggs, deformed embryos and consequent mortality. The higher the temperature, the more severe were the effects. When eggs were fertilized and constantly incubated at various temperatures, the effective level for 50% of the eggs and embryos (EL50) of temperature was 7·6° C at the developmental stage when eye pigmentation was visible. Fewer developmental abnormalities and a lower cumulative mortality rate were observed when embryos were exposed to high temperatures from the later, gastrula stage, than from fertilization or the four-cell stage. Irrespective of retarded development in terms of day-degrees (i.e. the sum of daily mean temperatures), a high incubation temperature reduced the development time of C. lavaretus, leading to earlier hatching, and hatched fry were shorter than at the reference temperature of 4–5° C. Global warming will particularly pose risks for stenothermic species such as C. lavaretus, with early life stages being especially susceptible. Thus, relatively small increases and fluctuations in river water temperatures during the spawning season of this anadromous species may have substantial negative impacts on its recruitment and population persistence.

Keywords: climate change; coregonid; deformity; early life stage; egg incubation

Document Type: Regular Paper

DOI: http://dx.doi.org/10.1111/j.1095-8649.2009.02502.x

Affiliations: Finnish Game and Fisheries Research Institute, P.O. Box 2, FI-00791 Helsinki, Finland

Publication date: February 1, 2010

bsc/jfb/2010/00000076/00000003/art00005
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more