Skip to main content

Bluegill Lepomis macrochirus synchronize pectoral fin motion and opercular pumping

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

The relative timing between operculum and pectoral fin motion was examined in swimming bluegill Lepomis macrochirus to determine if respiratory fluid flows from the operculum might have an effect on flow over the pectoral fin. Five bluegill were filmed swimming at speeds from 0·5 to 1·5 body (total) lengths s−1. The timing of opercular pumping and pectoral fin beating was noted and analysed using circular statistics. Fish tended to ventilate their gills every second or third pectoral fin beat. While locomotion and ventilation had different frequencies, however, they were synchronized: fish maintained a consistent phase relationship between them. Thus, within pectoral fin beats when the operculum pumps, the jet consistently occurred during pectoral fin abduction, ending just after the fin was fully abducted and beginning adduction. Based on the distance between the opercular slit and the pectoral fin base, the jet was estimated to reach the fin during maximum abduction. Dye flow visualization confirmed this estimate, revealing that the opercular flow wraps around the base of the fin during peak abduction, when it is likely to have little hydrodynamic effect.

Keywords: Lepomis macrochirus; bluegill; locomotor-respiratory coupling; operculum; pectoral fin; ventilation

Document Type: Regular Paper

DOI: https://doi.org/10.1111/j.1095-8649.2007.01416.x

Affiliations: Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, U.S.A.

Publication date: 2007-04-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more