Skip to main content

Female mating decisions: maximizing fitness?

Buy Article:

$43.00 plus tax (Refund Policy)

Sexual selection theory assumes that maximizing fitness is the ultimate goal in every mating decision. Fitness can be maximized directly by increasing the number of offspring (direct benefits) or indirectly by maximizing offspring's lifetime reproductive success (indirect benefits). Whereas there is considerable evidence in the literature for the influence of mating decisions on direct benefits, indirect benefits have been more elusive. Here, we review the variables that influence mating decisions made by females of freshwater fish and how these affect their fitness directly, as well as indirectly. Females enhance their fitness by matching their mating decisions to current environmental conditions, using a wide range of pre- and post-copulation mechanisms that enable them to maximize benefits from mating. Male sexual traits and courtship displays are signals used by females as a way of assessing male quality in terms of both direct and indirect benefits. Polyandry is very common among freshwater fish species, and indirect benefits have been hypothesized as drivers of its predominance. Despite intensive theoretical work, and multiple suggestions of the effects of indirect benefits, to date no study has been able to demonstrate experimentally the existence of indirect benefits in freshwater fish species. Additionally, most studies of direct benefits measure short-term benefits of mating decisions. In both cases, lifetime reproductive success is not assessed. Therefore, we are led to conclude that evidence as to whether female mating decisions result in direct and/or indirect benefits in freshwater fish species is still lacking. These results should be considered in light of the ongoing debate about the significance of indirect benefits in female mating decisions.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: fitness; freshwater fish; mating benefits; mating decisions; polyandry; sexual selection

Document Type: Research Article

Affiliations: Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, U.K.

Publication date: 2006-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more